
CoCoViLa at a glance

CoCoViLa is a software tool for model-based software development with a visual language
support that performs automatic synthesis of programs from logical specifications. It is tightly
integrated with Java: it is written in Java, uses advanced features of Java, and it supports
programming of new software components in Java almost without restrictions.

Software technologies supported by CoCoViLa enable the developers to separate domain
analysis, application design and implementation. It is expected that these processes are
performed by people with different expertise, and it provides simple visual development tools
for their communication. One can distinguish two different ways of software development in
it: 1) design and implementation of large applications and 2) development of domain-oriented
software packages with visual languages. They must be supported by different software
technologies. Development of large software systems requires support of a heavyweight
technology. A domain-oriented package with a visual language can easily be developed in an
agile way. Some examples of applications of this kind are a package for simulation of
hydraulic systems and a package for synth
esis of services on large service models.

CoCoViLa consists of two runnables: Class Editor and Scheme Editor. The Class Editor is
used for implementing visual languages for different problem domains. This is done by
defining models of language components as well as their visual and interactive aspects. The
Scheme Editor is a tool for drawing schemes, compiling and running programs defined by a
scheme and a goal.

Model-based software development
Model-based software development is a way to overcome the increasing complexity of
software products and their changeability. It is based on dividing the software development
into two separated processes: domain engineering and application engineering. Both include
software development as a part. (Precise names for these processes should be domain
software engineering and application software engineering.) The domain engineering provides
software assets for the use in the application engineering. Software assets are the reusable
resources used in application engineering. Examples of software assets include domain
models, software architectures, code components and application generators with visual
languages. This facilitates software development by raising the conceptual level of application
programming. Application engineering results in the development of an application – a
program that performs the required tasks, see Fig. 1.

Domain
engineering

Software
assets

Application
engineering Application

Figure 1. A general view of model-based software engineering

Software assets in CoCoViLa are organized around the visual language – they are concepts of
domain implemented as components and represented by visual objects. The assets of one
application domain constitute a package.

Visual language
A visual language developed in CoCoViLa is intended, first of all, for specifying models by
drawing their schemes and adding data to components of schemes. A scheme is always
translated into a text that is a specification of an application. A scheme can be used also as an
environment of communication with an application – for controlling its execution and
displaying results. Schemes are handled by the scheme editor.

Figure 2. An example of scheme in a scheme editor
window

Fig. 2 shows a scheme editor window that includes
a scheme, and includes menus with all commands
needed for development and usage of a scheme.
The lower menu bar includes buttons for
components available for developing a scheme in
the selected context. These buttons represent the
concepts of a particular domain oriented visual
language.

Automatic synthesis of programs
A model presented as a scheme is automatically translated into a specification of an
application in CoCoViLa. A specification always contains some information about the
computability of variables (components) included in the specification. This information may
be implicitly given in a specification of a data structure, e.g. if a is a component of b, then a
value of a is always computable from a value of b. This information can be represented by
simple equations, and it can be explicitly represented by axioms specifying the applicability
of methods of a Java class. CoCoViLa uses this information automatically for synthesizing, if
possible, a Java program that performs a task given by a goal, see Fig. 3. A goal specifies a
task of computing values of output variables listed in the goal from given values of input
variables listed in the goal. The program synthesis method is based on formal logic and it is
called structural synthesis of programs.

Figure 3. Program synthesis from a specification and a goal

Essential concepts
Model. Model is a representation of some entity (object, process, system etc.) by means of
abstraction in terms of an application domain. A model is specified by defining its
components, evaluating some parameters of them, and defining bindings between the
components. A model can be unfolded into a flat form that contains only variables and
functional dependencies for computing the variables. Model is a meaning of a specification
for the user.

Rich component. Rich component is a description of a domain-specific concept used for
describing models. It is a class, extended with information needed for automatic usage of the
class, and also for visual handling of instances of the class. It is therefore also called visual
class. A rich component may have four parts:
• visual part – its image, pop-up window etc.
• specification (a logical part)
• program component
• daemon.

The visual part is for the interaction with a user. The specification and the program
component constitute a metaclass. This is a Java class, where a specification (i.e. the logical
part) is included as a text. This specification is called also metainterface, because it
determines which new methods can be synthesized on the metaclass. The daemon is another
Java class related to the rich component that describes a thread started by a user, if needed.
Using daemons enables one to develop flexible interfaces to programs. Not all rich
components have to include daemons. Example of a rich component Boiler is presented in
Fig. 4. We see two Java classes Boiler and BoilerDaemon as well as visual image of the
rich class there. The Boiler class written in Java and shown on the right side of Fig. 4 is a
metaclass – it includes two parts of the rich class: logical part and program component. The
left side of the Fig. 4 shows the boilers image and the daemon.

Program
synthesis

 Specification

Goal

Application

Figure 4. Rich component

Specification.
Specification is a text describing a model. It represents information about computability of
variables occurring in the model. It includes variable declarations and information about the
functions that can be used for computing values of the variables.

Core of the specification language has three types of statements in it:

1) Declaration of variables
type id[,id,...]

The type is a primitive type, a class, or a metaclass.

2) Binding
a = b

Binding is an equality, where a, b are variables.

3) Axiom
precondition -> variable{implementation}

Axiom specifies a function that can be used for computing a value of the variable on the right
side of the arrow by using the implementation. Precondition is a list of inputs of the function:
variables and subtasks. Subtasks will be explained separately, and here we restrict the
explanation to axioms with only variables on the left side. In this case an axiom specifies a
function that computes a value of the variable on the right side of the arrow from values of its
input variables written on the left side. Implementation is name of a method that performs the
computations. Its parameters correspond positionally to the input variables. For example, an
axiom

x,y -> z{P}

can specify the method

int P(int a, int b) {…}

Axioms have a precise logical meaning, where commas denote conjunction and arrows denote
implication symbols. The variable symbols are translated into logic as propositions about the
computability. The example axiom is as follows in logic:

“x is computable” & “y is computable” ⊃ “z is computable”.

There are extensions of the core of the specification language: equations, aliases, simple
inheritance that are reducible to the core by simple transformations. These extensions increase
the convenience of usage of the language.

Subtask. Subtask is a goal for synthesis of a value of a functional variable which is an input
variable of a function described by an axiom where the subtask occurs. This description has
the form

[precondition -> postcondition]

where pre- and postcondition are respectively lists of input and output variables of the
multifunction (a function with several outputs) that is the value of the functional variable. A
method described by an axiom with subtasks can be used in computations only if all its
subtasks are solvable and all its input variables have values. The solvability of a subtask
means that a program can be synthesized for solving it. An example of an axiom with a
subtask is as follows:

[x -> y], a –> b {P}

where x -> y is a subtask, a is an input variable and b is an output variable of a function
described by the axiom that specifies the computability of a method P.

Metaclass.
Metaclass is a Java class supplied with a specification. The specification is included in the
source of the class as a comment between /*@ and @*/. The specification, called also
metainterface, describes how the methods of the class can be used in computations. The
following is an example of a metaclass Or where the logical truth values are represented by
integers 0 and 1:

class Or {
/*@ specification Or {

int in1, in2, out;
in1, in2 -> out{calc};

}
@*/
int calc (int in1, int in2) {

return Math.max(in1, in2);
}

}

Scheme.
Scheme is a visual representation of a model. It can always be translated into a specification.
A scheme is used also as an environment of communication with an application – for
controlling its execution and displaying results.

Figure 5. Scheme and specification

A scheme is built by composing it visually from images of components and binding the
images by means of connection lines. A connection line binds two ports of images and
specifies an equality between the variables represented by the ports. Fig. 5 shows a scheme
and a specification derived from it. It also shows a pop-up window of the component And_0
where two values of two variables are given:

in1=1
in2=1

These values are visible in the scheme and they are represented in the specification as

And_0.in1=1
And_0.in2=1

Package
Package is a collection of rich components and schemes related to an application domain,
collected in a package folder and supplied with a package description file in xml format.

	CoCoViLa at a glance
	Model-based software development
	Visual language
	Automatic synthesis of programs
	Essential concepts

