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Abstract

Visual specification of software is gaining popularity, however its usage is

restricted by the lack of precise semantics of visual languages. In this the-

sis a method for representing the semantics of visual languages by means of

attribute models is introduced. Attribute models of a wide class of visual

scheme languages are defined, higher-order attribute models that allow syn-

thesizing recursive, branching or cyclic programs are explained. Dynamic

evaluation of attributes is used. Three kinds of deep semantics of schemes

are presented as different ways of usage of attribute models of schemes. The

implementation of attribute semantics of visual languages is done in the sys-

tem CoCoViLa. The features of specification language of attribute models of

schemes and visual classes, as well as the realization of attribute evaluation

technique are presented.
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Chapter 1

Introduction

1.1 Motivation and goal

Visual specification of software is gaining popularity, but its usage is re-

stricted by the lack of precise semantics of visual languages. In the domain

of programming languages, implementation of semantics is supported by at-

tribute grammars that enable one to program a stepwise transformation of

a source text into the code. Attribute grammars have also been used for the

representation of semantics of visual specifications in some specific applica-

tions [2], [20]. Our aim is to give a possibly general way to implement deep

semantics of visual languages, i.e. to give tools that enable one to program in

a systematic and sufficiently simple way transformations that automatically

produce the meaning of a visually represented artifact. For this purpose we

generalize attribute semantics and apply it to a well-defined class of visual

languages.

We consider here visual languages that are not restricted to any specific

domain, but still have a well-defined syntactic structure. Actually, we have

to restrict us to the languages where a visual specification has a definite

structure that can be represented as a graph. One could call such languages

scheme languages. Then a sentence in a language of this kind is a scheme.

Languages of schemes are often used in engineering domains, e.g. schemes of

electrical, logical, mechanical etc. devices. Generally, considering a structure
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of a visual description of some artifact, one comes always to a scheme repre-

senting components and their relations (connections), although this scheme

is not always explicit. Also considering the process of composing a picture

on a screen of the computer, we always see that the picture is composed of

elements of various types related to each other in some definite ways, often

positionally. Even an unordered collection of icons on a desktop is a scheme

in our meaning.

1.2 Context of the work

The present work is a part of the research project on visual languages that

has resulted in the programming environment - CoCoViLa [9], [10]. This

project has been supported by the grant no. 5800 of the Estonian Science

Foundation. The first version of CoCoViLa has been implemented by Ando

Saabas [30]. The present work relies on the program synthesis technique

called structural synthesis of programs (SSP) that has been the subject of

research in the Institute of Cybernetics for many years.

1.3 Organization of the thesis

The thesis is organized in the following way: in Chapter 2 we show differ-

ent representations of schemes and their basic features. Chapter 3 gives an

overview of conventional attribute grammars and introduces the notion of

attribute models as well as attribute evaluation techniques on such models.

In Chapter 4 we define syntax, shallow and deep semantics of schemes and

in Chapter 5 we present the realization of semantics in CoCoViLa. Experi-

ments with the visual languages implemented in CoCoViLa are described in

Chapter 6. In Chapter 7 we bring an overview of the related work and finally

make conclusions in Chapter 8.
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Chapter 2

Schemes

2.1 What is a scheme?

Scheme is visually a set of objects connected with each other either directly

or using special connection lines. We allow implicit (invisible) relations in a

scheme.

Scheme is a visual representation of an artifact of a particular domain.

The meaning of a scheme for different people can be vary depending on their

knowledge and belonging to the particular domain to which the scheme re-

lates. On the one hand an ordinary user may consider a scheme as a plain

drawing or just a set of objects with some relations between, on the other

hand an expert may see some deeper implicit meaning denoting a compu-

tational problem in a scheme. Figure 2.1(a) shows an artifact – assembly

of a shaft. Mathematically, a scheme can be represented as a graph struc-

ture where nodes are objects and edges are connections between objects.

Figure 2.1(b) presents a graph that corresponds to the assembly of a shaft.

2.2 Basic features of schemes

Figure 2.2 shows basic features of a scheme language:

• visual identification of type of a component by shape of image,
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Figure 2.1: Assembly of a shaft

Figure 2.2: A scheme

• connecting particular ports or variables (x1, x2, x) of components,

• introducing names of components (a, b),

• assigning value (112.4) to a field of a component.

Some names are implicit, for example, the variable v behind the given

value 112.4 and the name z of the port denoted by the dark element of the

component b. The specification of this scheme in a textual language can be,

for instance, as follows:

ClassP a;

ClassQ b;

a.x1 = b.z;

a.x2 = b.x;

b.v = 112.4;

9



This specification includes declarations of components, equalities that

bind variables belonging to components and an assignment of value to a

variable. (Values can appear also implicitly, for instance, as coordinates of

components in a scheme.)

Here we have briefly introduced schemes as well as their features that we

are intrested in.
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Chapter 3

Attribute Semantics

Attribute grammars (originally introduced by Knuth [15] as an extension to

context-free grammars) have become very popular formal notation for ex-

pressing the static semantics of programming languages. In attribute gram-

mars, attribute dependencies (semantic rules) are bound to productions of

the syntactic part of a grammar. In our approach we have no productions,

and in this chapter we are going to define attribute models that can be di-

rectly bound to objects and schemes in order to represent their semantics.

In order to give a better background for a reader not familiar with at-

tribute techniques, in the beginning of this chapter we give basic definitions

related to attribute grammars.

3.1 Attribute grammars

A canonical attribute grammar (AG) consists of a context-free grammar

(CFG) G extended with a finite set of attributes A for the non-terminals

and a finite set of semantic rules R for the productions:

AG = 〈G, A, R〉.

A context-free grammar

G = 〈V, N, P, S〉
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consists of an finite alphabet V of terminal and nonterminal symbols repre-

sented by sets Σ and N respectively (V = Σ∪N , Σ∩N = ∅), a set P of pro-

ductions and S ∈ N as the starting symbol of grammar G. The productions

in P are denoted by X0 → X1, ..., Xn, where X0 ∈ N and Xi ∈ V, i = 1, ..., n,

i.e. left-hand side X0 is a nonterminal and the right-hand side X1, ..., Xn is

a string of nonterminal and terminal symbols. In the case where n = 0, the

right-hand side is empty and is represented by the symbol ε. The language

generated by G, denoted by L(G), is the set of sequences of terminal symbols

that can be derived by rewriting the start symbol S.

A finite set of attribute A(X) is associated with each symbol X ∈ V .

The attributes are characterized as synthesized S(X) or inherited I(X), de-

pending on if they are used to pass the information upward or downward in

the syntax tree. S(X) and I(X) are two disjoint sets, A(X) = S(X)∪ I(X).

The total set of attributes in grammar is A =
⋃

A(X).

Given a production p ∈ P, p : X0 → X1, ..., Xn, a semantic rule is

written α0 = f(α1, ...αm) and defines α0 as the value of applying the semantic

function f to the attributes α1, ...αm of X0, ..., Xn. Rp is a finite set of

semantic rules associated with the production p. The attribute α0 must be

either a synthesized attribute of X0 or an inherited attribute of Xi, i =

1, ..., n. I.e., a semantic rule defines either a synthesized attribute of the

left-hand symbol of the production, or an inherited attribute of one of the

symbols on the right hand side of the production. A semantic rule is local

and depends only on information available in the attributes of the symbols

of the production.

A context-free grammar assigns an abstract syntax tree to every sentence

of the language. The semantic rules of an attribute grammar assign attributes

to the nodes of the syntax tree. The resulting tree is called attributed tree or

undecorated tree. An attributed tree T is defined as follows: to every node

N of T that is an instance of nonterminal symbol X, attribute instances

are assigned. These instances correspond to the attributes of X. For each

attribute a ∈ A(X) the corresponding instance is denoted by N.a.

Attribute evaluation, also called tree decoration, is the process that com-

putes values of attribute instances within an attributed tree T according to
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the semantic rules of the underlying AG. A program that performs attribute

evaluation is called attribute evaluator. A decorated tree is an attributed

tree in which all attribute instances have a value that was computed accord-

ing to the attribution rules of the grammar. The meaning of a sentence s

of the language generated by G consists of the values of the synthesized at-

tribute instances associated with the root node of the decorated attributed

tree, assigned to s. In other words, the meaning is given by the function

from inherited to synthesized attributes at the root of the tree.

For further details on attribute grammars and attribute evaluation meth-

ods, refer to [26], [29], [31], [45].

There are many works on evaluation of attributes of AGs that use the

fact that syntax of a language gives some structure to a set of semantic rules

associated with any attributed tree. In the case of scheme languages this

structure is weak and practically difficult to use. That is why we are using

the notion of attribute models and dynamic attribute evaluation that we will

discuss in the following sections.

3.2 Attribute models

In this section we give definitions for attributes, attribute dependencies and

attribute models.

Definition 3.1. Attribute is a variable with a type. It is denoted by a pair

〈n, t〉 where n is the name of an attribute and t is its type.

Definition 3.2. Attribute dependency is a relation between attributes that

is represented by one or several functional dependencies whose inputs and

outputs are attributes bound by this relation.

Let us introduce two notations for functional dependency

(y1, ..., yn) = f(x1, ..., xm)

where f is a function of m arguments computing a value of n-tuple. The

variables x1, ..., xm are inputs and y1, ..., yn are outputs of the functional

13



dependency. When we present only the type of the dependency, then we

denote it by

x1, ..., xm → y1, ..., yn ,

which means for us that having x1, ..., xm we can compute y1, ..., yn. When

we present also the implementation f of the dependency, then we denote it

by

x1, ..., xm → y1, ..., yn{f} .

We assume here that attribute dependencies can be presented by equali-

ties, structural relations, equations and preprogrammed procedures (methods

of a class).

1. Equality x = y can be rewritten as x → y; y → x.

2. Structural relation binding a tuple of variables x1, ..., xm with a struc-

tured variable x = (x1, ..., xm) can be presented as x1, ..., xm → x; x →
x1, ..., xm.

3. Equation, i.e. x = y + z can be presented as a collection of functional

dependencies, in the given example as y, z → x; x, y → z; x, z → y.

4. Preprogrammed procedure with attributes x1, ..., xm as parameters pro-

ducing a value of attribute y can be presented as x1, ..., xm → y.

Definition 3.3. An attribute model M is a pair 〈A, R〉, where A is a finite

set of attributes and R is a finite set of attribute dependences binding these

attributes.

Attribute models M
′

= 〈A′
, R

′〉 and M
′′

= 〈A′′
, R

′′〉 can be composed

into a new attribute model binding some of their attributes by equalities.

Let us have a set of equalities s = {M ′
.a = M

′′
.b, ... ...,M

′
.d = M

′′
.e}

binding some attributes of models M
′
and M

′′
. By ∪s(M

′
, M

′′
) we denote

an attribute model with the set of attributes A
′ ∪A

′′
and the set of attribute

dependencies R
′ ∪ R

′′ ∪ s. Let us generalize the composition of attribute

models for more than two models as follows.
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Definition 3.4. For a set of equalities s that bind some attributes of models

M1, ...,Mn we denote by ∪s(M1, ...,Mn) an attribute model with the set of

attributes A1 ∪ ...∪An and the set of attribute dependencies R1 ∪ ...∪Rn∪ s,

and call it composition of M1, ...,Mn with bindings s.

Remark 3.1. When building a composition of attribute models, renaming

of attributes may be required. A straightforward way to do it is to add the

name of a model where an attribute came from to its name. This introduces

composite names, e.g. m.x, m.y for attributes x, y of an original model m.

Remark 3.2. Any attribute model can be presented in a flattened form where

all attribute dependencies are functional dependencies. In order to do this,

one has to consider relations between attributes as sets of functional depen-

dencies and take their union for the set of attribute dependencies of the at-

tribute model in the flattened form.

A simple undirected graph G = (V, E) is called bipartite if there exists a

partition of the node set V = V1∪V2 so that both V1 and V2 are independent

sets. G = (V1 + V2, E) denotes a bipartite graph with partitions V1 and V2.

Remark 3.3. An attribute model 〈A, R〉 can be presented as a bipartite graph

with partition of the set of nodes A∪R. There is an edge (a, r) in the graph

if and only if the attribute a is bound by the attribute dependency r.

Remark 3.4. An attribute model 〈A, R〉 in the flattened form can be pre-

sented as a directed bipartite graph with sets of nodes A and R. There is an

arc from a to r, if and only if a is an input of r and an arc from r to a, if

and only if a is an output of r.

3.3 Computational problems on attribute

models

Let U and V be two sets of attributes of an attribute model M . We call a pair

〈U, V 〉 a computational problem on the attribute model M , where U is a set of

input attributes (or just input) and V is a set of output attributes (or output)
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of a computational problem. The meaning of a computational problem 〈U, V 〉
is that given values of attributes from U find values of attributes of V using

attribute dependences of M .

If for two computational problems 〈U1, V1〉 and 〈U2, V2〉 we have U1 ⊂ U2

or V2 ⊂ V1 then we say that the computational problem 〈U1, V1〉 is larger than

the computational problem 〈U2, V2〉, and denote this 〈U2, V2〉 < 〈U1, V1〉.

3.4 Evaluation of attributes

We show that there is a procedure that for any computational problem 〈U, V 〉
on a attribute model 〈A, R〉 in the flattened form decides whether there is a

way to compute values of attributes of V from given values of attributes of U ,

and in the case of the positive answer produces an algorithm for computing

the values, i.e. produces an algorithm for solving the computational problem.

Definition 3.5. Value propagation is a procedure that for an attribute model

M in flattened form and a set of attributes U that belong to this model decides

which attributes are computable from U and produces a sequence of functional

dependences that is an algorithm for computing values of these attributes.

A simple value propagation algorithm works step by step as follows. At

each step it checks for each functional dependency whether its inputs are all

computed and some of its outputs is not computed. In the positive case,

the functional dependency will be added to the algorithm being built and all

outputs of the functional dependency will be added to the set of computed

attributes. Initially the set of computed attributes equals to the set of given

attributes U and algorithm (i.e. the sequence of functional dependencies) is

empty.

Remark 3.5. There are very efficient algorithms for value propagation that

work in linear time with respect to the size of attribute model, see [40].

Remark 3.6. Value propagation is a procedure that decides for a computa-

tional problem whether it is solvable, and in the case of positive answer gives

an algorithm of solving the problem.
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Remark 3.7. There is a procedure that gives a minimal algorithm for solving

a computational problem, see [13].

Remark 3.8. Set of all solvable computational problems on an attribute

model is well defined, hence we can decide that an attribute model is an

attribute dependency with algorithms for solving computational problems as

its set of functional dependencies.

3.5 Higher-order attribute models

Unfortunately, attribute models as defined above are not very expressive.

One can compose only linear sequences of functional dependencies for solv-

ing computational problems on them. We are going to define now more

expressive attribute models that enable one to synthesize more complex al-

gorithms.

Let A be a set of attributes and P a set of computational problems with

input and output attributes from A.

Definition 3.6. Higher-order functional dependency (hofd) is a functional

dependency that has inputs from A ∪ P and outputs from A. Inputs from P

are called subtasks.

Definition 3.7. Higher-order attribute model is a pair 〈A, R〉 where A is a

set of attributes and R is a set of attribute dependencies that include some

higher-order functional dependencies on the set of attributes A.

Considering types of functional dependencies, one can see that besides

functional types like

x, y → z

we have now also types like

(u → v), x → y,

where u → v is a subtask. Its value is a function (represented by an algo-

rithm) that computes v from u. This function must be given, in order to
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use the higher-order functional dependency. Sometimes this function can be

synthesized on an attribute model that includes the higher-order functional

dependency, and only in such a case the higher-order functional dependency

can be used in computations.

This extension makes a big difference in the following: Higher-order at-

tribute models are so expressive that enable one to synthesize recursive,

branching and cyclic programs. In order to do this one has to present some

control structures, e.g. loops and conditional branching as higher-order func-

tional dependencies. Detecting solvability of a problem and synthesizing an

algorithm on a higher-order attribute model has exponential time complex-

ity [23].

A simple example of a hofd with a subtask is “compute the sum z of

ba for a = 1, ..., x knowing the rule for computing b for any a” expressed

conventionally by the following formula:

z =
x∑

a=1

ba

We express this as

(a → b), x → z.

To have a more concrete example, let us take a problem of computing

a double integral under the assumption that an integration method is im-

plemented as a hofd. The attribute dependency is for computing value of

integral of any function f(x) specified on the interval [0, to]:

val =

∫ to

0

f(x) dx.

This is specified by

(arg → res), to → val.

where arg stands for argument x, and res stands for the value of func-

tion f . (Both to and f should be computed before the hofd can be applied.

18



The subtask here is analogous to the one in axiom of the formula for sum

presented above. Now we can specify the double integral problem:

y =

∫ x

0

∫ f2(v)

0

f1(u, v) dudv.

The attribute model of double integration uses two hofds, and, for in-

stance, after introducing attributes for intermediate values fV al, integral1, upb1

will include the following four attribute dependencies:

(u → fV al), upb1 → integral1

(v → integral1), x → y

u, v → fV al

v → upb1

where fV al = f1(u, v), integral1 =
∫ upb1

0
f1(u, v) du and upb1 = f2(v).

As a yet another example, let us consider more attribute models with two

hofds. This is a rather typical case that covers computing double sums and

products:

∑ ∑
aij

∏∏
aij

∑ ∏
aij

∏∑
aij

The attribute model for double sum

z =
x∑

i=1

y∑
j=1

aij

has the following attribute dependences:
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(j → val), y → sum1

(i → sum1), x → z

i, j → val

where attributes for intermediate values val and sum1 correspond to aij

and
∑y

j aij respectively.

3.6 Evaluation of higher-order attributes

Let us consider first the evaluation of attributes of an attribute model that

contains only one higher-order functional dependency with a single subtask.

Then the following steps are performed.

First the procedure of simple value propagation is done using only at-

tribute dependencies that are not higher-order. If this does not solve the

problem (does not give values of all outputs of the problem), then the hofd

is applied, if it is applicable. A hofd is applicable if and only if all its in-

puts are given and all its subtasks are solvable and it computes values of

some attributes that have not been evaluated yet. A sequence of applica-

ble functional dependencies obtained in this way is called maximal linear

branch (mlb). It contains one hofd at the end of the sequence. There are

two possible outcomes of this procedure:

1. A mlb cannot be found and the problem is unsolvable.

2. The constructed mlb reduces the problem to a simpler one. (If a mlb

exists, then it obviously reduces the problem, because it computes some

new values of attributes.)

Now the simple value propagation (using only attribute dependencies that

are not higher-order) is done again. The problem is either solved in this way,

or it is unsolvable, because no more possibilities for computing new values

exist. It is easy to see that the algorithm above works in linear time.
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If there is more than one higher-order dependency in an attribute model,

then there are several options for choosing a hofd, and the planning algorithm

cannot choose any appropriate hofd for solving the computational problem

without deeper analysis. Then the exhaustive search on and-or tree is re-

quired. There are two basic strategies of construction of and-or trees for

solving subtasks. The first one does not allow to use hofds that have al-

ready been used in some mlb. Having this restriction we reduce the number

of branches in the search tree to the number of all possible permutations

of hofds. The second strategy allows repetitions and then the algorithm is

PSPACE-complete [25].

In a general case, when an attribute model M contains several higher-

order functional dependences, the evaluation strategy is as follows.

First the procedure of simple value propagation is performed considering

all attribute dependencies that are not higher-order. If this does not solve

the problem (does not give values of all outputs of the problem), then any

applicable hofd is chosen and a maximal linear branch is obtained. There

are three possible outcomes of this procedure:

1. After constructing the mlb the problem is solvable (like in the case of

a single hofd).

2. A mlb cannot be found and the problem is unsolvable.

3. A mlb can be found and the initial problem 〈U1, V1〉 is reduced to a

simpler one 〈U2, V2〉, U2 = U1 ∪ Y and V2 = V1\Y , i.e. 〈U2, V2〉 <

〈U1, V1〉, where Y is the set of outputs of the hofd.

This procedure (construction of mlb) is repeatedly applied until the prob-

lem is solved or no more mlb can be constructed.

It is important to notice that for applying a hofd we have to solve all

its subtasks. This means that the whole procedure of problem solving

must be applied for every subtask. As stated above, this requires a

search on an and-or tree of problems (subtasks) on the attribute model. The

root of a tree corresponds to the initial problem, and it is an or-node, because

there may be several possible mlbs for this problem. And-nodes correspond
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to higher-order functional dependencies and have one successor for its each

subtask, plus one successor for the reduced task that has to be solved after

applying the mlb. Or-nodes of the tree correspond to the subtasks that have

to be solved for their parent and-node.

Let us abbreviate X for x1, ..., xn and Si for (ui,1, ..., ui,n → vi,1, ..., vi,m).

Then a hofd has the form: S1, ..., Sm, X → Y , where X = x1, ..., xk, Y =

y1, ..., yn, xi, yj ∈ A are attributes and Sk ∈ P are subtasks. Let us label each

functional dependency in the tree with Ri and get the following notation for

a hofd:

Ri : Si,1, ..., Si,m, X → Y .

Figure 3.1 shows an and-or search tree for solving problems on higher-

order attribute models. Its root is the original problem S0. The and-nodes

are the hofds that can be applied first for solving the problem of their parent

node. The successors of a hofd node Ri are its subtasks and the reduced

problem S
′
i that remains to solve after applying the hofd. Notice that each

hofd Ri may appear several times on different levels in one and the same

branch of the tree. The search on the and-or tree is depth-first search with

backtracking.

S0

Rα
... Rβ

Sα,1 Sα,m Sβ,1 Sβ,n... ...

Rγ Rζ...

... ...

S
′
α S

′

β

Figure 3.1: And-or search tree for attribute evaluation on higher-order at-
tribute model
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Chapter 4

Syntax and Semantics of

Schemes

In this chapter we define formal syntax of schemes in a very nonrestrictive way

and introduce semantics of schemes using attribute models and evaluations

of attributes on them as described in Chapter 3.

4.1 Syntax

Let us have a finite number of types. A node type is an expression t(a, ..., b),

where t is a type and a, ..., b are typed variables, i.e. pairs of the form (x, t
′
),

where x is a variable and t
′
is its type. The variables a, ..., b are called ports

of the node type t(a, ..., b). A scheme is a set of pairs (u, t) called nodes,

where u is a name (identifier) and t is a node type, and a set of equalities

u.a = v.b called bindings, where a, b are ports of one and the same type of

nodes u, v respectively, and a set of valuations u.a = v, where v is a value of

a suitable type.

A scheme as defined above can be presented by a text in a very simple

language that has three kinds of statements:

1. declaration of a component:

<type> <identifier>
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This declaration specifies a component of a scheme with given type,

and its name given by identifier.

2. binding:

<name of component>.<name of port>

= <name of component >.<name of port>

This statement specifies an equality between variables of components.

These variables are also attributes of attribute models of components.

3. valuation:

<name of component>.<name of port> = <value>

This statement defines a functional dependency with no inputs and one

output that gets a constant value.

4.2 Shallow semantics

When we consider a particular problem-domain, a scheme representing some-

thing in this domain typically has what one could call the real semantics, the

meaning of the scheme that a specialist of that domain recognizes and un-

derstands. The obvious aim is to represent this knowledge (at least to some

extent) in a computer. For this, we have to reason about the semantics

of schemes on several different levels. Firstly, one can consider the shallow

semantics of a scheme - the textual representation of the graph underlying

the scheme. On this level, all deeper information about the scheme is disre-

garded. To be more precise - it is hidden in the types (classes) of objects.

Definition 4.1. The shallow semantics of schemes is a function SS, which,

for each scheme G, returns a string including exactly the following:

• Type obj; whenever G includes an object named obj of type Type.
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• obj.x = v; whenever an attribute x of object obj has the value v in

scheme G.

• obj1.x = obj2.y; whenever there is an edge between ports x and y, and

these ports are associated with objects obj1 and obj2, respectively.

4.3 Deep semantics

Definition 4.2. Attribute model of a scheme is the composition of attribute

models of its nodes bound by the equalities of its shallow semantics and in-

cluding additional functional dependencies for valuations in the scheme. Its

attributes, functional dependencies and attribute dependencies are called also

attributes, functional dependencies and attribute dependencies of the scheme.

More formally, if a scheme has nodes obj1, ..., objn with attribute models

M1, ...,Mn respectively, and the equalities of shallow semantics constitute a

set s = {obji.a = objj.b, ..., objs.d = objk.e}, and valuations are objq.x =

v1, ..., objp.y = vl, then the attribute model is ∪s(M1, ...,Mn) ∪ {objq.x =

v1, ..., objp.y = vl}.
We know that there is a procedure that for any computational problem

〈U, V 〉 on a scheme decides whether there is a way to compute values of

attributes of V from given values of attributes of U , and in the case of the

positive answer produces an algorithm for computing the values, i.e. produces

an algorithm for solving the computational problem, see attribute evaluation

in Chapter 3. Let us denote by S1 the function producing an algorithm for

any solvable computational problem on a scheme.

Definition 4.3. The deep semantics DS1 of schemes is a composition of the

shallow semantic function SS and of the semantic function S1 that defines

computability on a scheme.

Let us denote by S2 the function that produces an algorithm for solving

the largest solvable computational problem with empty set of input attributes

on the scheme.
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Definition 4.4. The deep semantics DS2 of schemes is a composition of the

shallow semantic function SS and of the semantic function S2 which defines

largest computability on a scheme.

The third semantic function is defined as an attribute evaluator of an

attribute grammar [27]. Up to now we have silently considered attributes as

meaningful variables of a problem domain. However, in the most general case

attributes can be just variables bearing some semantic information. The real

meaning of a scheme can be computed as a value of a distinguished attribute,

let us call it a scheme attribute on the attribute model of the scheme. We de-

note by S3 the function that, given a scheme, computes its scheme attribute’s

value. The scheme attribute corresponds to the synthesized attribute of a

nonterminal symbol representing the whole program in the conventional case

of attribute grammars of programming languages, and in our case it repre-

sents the meaning of the whole scheme. The only essential difference between

our approach and the conventional dynamic attribute evaluation is that we

have to use a more sophisticated attribute evaluator, because instead of an

abstract syntax tree we have a graph representing a scheme that in a general

case is not a tree, and we accept higher-order attributes as well.

Definition 4.5. The deep semantics DS3 of schemes is a composition of the

shallow semantic function SS and of the semantic function S3 that computes

the value of a scheme attribute.

We have to notice that implementing DS3 is a much harder task than

implementing DS1 and DS2. It is really a compiler-writing task for a visual

language, whereas the latter two semantic functions are implemented easily

by specifying domain-oriented functional dependencies.
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Chapter 5

Implementation

Our approach to attribute semantics of schemes has been implemented in

a tool CoCoViLa. The initial version has been presented by Ando Saabas

[30] for simple functional dependences (without higher-order), the present

chapter reflects improvements and additions that have been made to the

framework.

This tool is used for development and prototyping of domain-specific vi-

sual languages in Java environment. A visual language is implemented as

a package that is a set of components called visual classes that are Java

classes annotated with metainterfaces and supplied with corresponding vi-

sual images. Deep semantics of schemes is implemented in such a way that

for scheme’s attribute evaluation, executable code is produced.

5.1 Metaclasses and metainterfaces

Java is the object-oriented programming language, where classes describe

properties and the behavior of an object. In CoCoViLa, in order to describe

the behavior of a component of a scheme, one has to annotate component’s

Java class with a metainterface. Java class supplied with metainterface is

called metaclass. Metainterface is a textual presentation of attribute model

of the component, i.e. all attributes as well as attribute dependences are

specified within a corresponding metainterface.
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The actual presentation of a metainterface is the specification in a form of

Java comment, thus it is visible to CoCoViLa but ignored by Java compiler.

class VisualClass {

/*@ specification VisualClass {

//...

}@*/

}

5.1.1 Specification language of metainterfaces

The specification language of metainterfaces consists of textual representa-

tion of attribute dependencies (defined in section 3.2), statements from the

textual language of schemes (section 4.1) as well as some additional useful

extensions. Initially, it has been presented in [30]. In this section we are going

to describe briefly all features of the language, and are going to concentrate

on axioms and their usage, as well as an inheritance, wildcards and aliases

that have required considerable amount of work from the author. Formally,

the syntax is written as a context-free grammar in BNF.

MetaInterface ::= ‘specification’ ClassName

[InheritanceDecl] ‘{’

Specification ‘}’

Specification ::= (VariableDecl | Constant | Binding | Axiom

| Alias | Equation) ‘;’ [Specification]

The ClassName is the name of a metaclass where the metainterface is

being declared.

Metainterface variables

Variables correspond to attributes of an attribute model behind the metain-

terface. The declaration follows the Java syntax.
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VariableDecl ::= Type IdentList

IdentList ::= Identifier [‘,’ IdentList]

Identifier is the name of the declared variable. Type can be either

• a primitive type of the Java programming language or ‘void’,

• a class in the Java programming language, or

• a name of other metaclass declared in a visual language;

Constants

The declaration of a constant has the form:

ConstantDeclaration ::= ‘const’ Identifier ‘=’ value

Where value refers to a constant value in the Java programming lan-

guage, e.g. Math.PI.

Bindings

Binding is an equality relation between variables used to show that the re-

alization of the left-hand side variable is the same as the realization of the

right-hand side variable. The specification of the binding has the form

Binding ::= Variable ‘=’ Variable

Where Variable can be in the form of

Variable ::= Identifier | Variable‘.’Identifier

This definition uses hierarchical structure of variables and compound

names. The specification a.x = b.y means that the realization of the vari-

able a.x is the same as the realization of the variable b.y. In an attribute

model relations x = y and y = x are semantically equivalent because they

both can be rewritten as x → y; y → x.
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Axioms

Axioms, written in the form of implications, correspond to functional depen-

dencies that also have implementations. On the left-hand side of the impli-

cation input attributes are listed, we call them preconditions, while on the

right-hand side are the output attributes, or postconditions of an axiom. If

all preconditions of an axiom are derivable, i.e. their values are computable,

then the implementation of this axiom can be applied for attribute evalu-

ation. The implementation of an axiom, specified in curly brackets, is the

Java method defined in the metaclass of the component. When the axiom is

applied, its input variables are passed to the implementation as parameters.

Disjunction “|” symbol on the right-hand side is used for separating possible

alternative outputs, for instance, exceptions, of the applied method.

Axiom ::= [VariableList [‘,’ SubTaskList]] ‘->’

Variable [‘|’ ExceptionList] ‘{’ Realization ‘}’
ExceptionList ::= ‘(’ ExceptionClass ‘)’ [‘,’ ExceptionList]

ExceptionClass ::= Type

Example. Here we show the metaclass Foo where its metainterface states

that the area can be computed using radius as the input parameter of the

method calcArea, which represents the implementation of the given axiom.

class Foo {

/*@ specification Foo {

double radius;

double area;

radius -> area {calcArea};

}@*/

double calcArea(double r) {

return Math.PI*Math.pow(r, 2);

}

}
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From the example above it is important to notice that the specification

variables are not variables of a Java class and we can see also how metain-

terfaces interact with Java methods (via axioms).

In addition, we have put the restriction that the right-hand side of an

axiom cannot be empty. If a method’s return type is void, a control variable

should be used (see next section). This is necessary because each application

of an axiom should add new evaluated variables into the algorithm, otherwise

such axiom will be never applied.

Example. In this example we present how to specify exceptions in the

metainterface.

Consider the metaclass Matrix:

class Matrix {

/*@ specification Matrix {

int row, col, element;

int[][] m; //matrix as array

row, col, m -> element

|(ArrayIndexOutOfBoundsException)

{getElement};

}@*/

int getElement( int i, int j, int[][] matrix )

throws ArrayIndexOutOfBoundsException {

return matrix[i][j];

}

}

Here the method getElement() is used to evaluate the variable element.

The provided method may throw the exception – ArrayIndexOutOfBoundsEx-

ception – and to be able to handle this situation (e.g. surround the call of

a method with a corresponding try-catch statement during automatic code

generation, see 5.5.2 ), exceptions should be specified as postconditions of an

axiom, separated from variables with the “|” symbol.
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Control variables

Control variables do not have a computational meaning, though if such vari-

able is used as one of the preconditions in the axiom, it should be derivable.

In the metainterface, a control variable should be declared with type void.

ControlVariableDeclaration ::= ‘void’ ControlVariableList

ControlVariableList ::= Identifier [‘,’ ControlVariableList]

Example.

void ready;

String path;

int status;

path -> ready { init }; (1)

ready -> status { getStatus }; (2)

The purpose of the given example is to show how the control variable

allows to control the execution priority of methods. Method getStatus

should be executed after the method init, which returns void. If the axiom

(1) had no postcondition, this would lead to a problem where we would be

unable to guide the evaluation process. Control variables help solving this

problem. When the axiom (1) is applied, ready becomes derivable. Only

then it is possible to use ready as a precondition of (2) to apply the axiom.

Assumptions and goals

The computational problem can be defined using an axiom without imple-

mentation, where preconditions are the inputs and postcondition are the

outputs of the computational problem. The output attributes of a prob-

lem are called goals, whereas input attributes – assumptions. In this case

the system tries to generate an attribute evaluator that will compute goals

from assumptions and remove all unnecessary (excessive) relations from the

evaluation algorithm.
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Goal ::= [Assumptions] ‘->’ Goals

Assumptions ::= Variable [‘,’ Assumptions]

Goals ::= Variable [‘,’ Goals]

Example. Let us have the specification as follows:

double a,b,c,d,e;

c = a^2; (1)

e = 3; (2)

b = e / c; (3)

d = sin( c ); (4)

a -> d; (5)

The line (5) denotes the goal d that should be computed from the assump-

tion a. The evaluation algorithm could be the sequence of lines (1) and (4),

assuming that a has already been evaluated and ignoring all other relations

(i.e. (2) and (3)) that are not required for the computation of goal d.

Equations

Equations are used to get rid of excessive axioms in the metainterface, im-

plementation of which could have been arithmetic expressions.

Equation ::== Expression ‘=’ Expression

Expression ::= [ ‘-’ ] Term [ ( ‘+’ | ‘-’ ) Term ]

Term ::= Factor [ ( ‘*’ | ‘/’ ) Factor ]

Factor ::= Primary [ ‘^’ Primary ]

Primary ::= Number | Variable |‘(’ Expression‘)’ |

Function-name ‘(’ Expression ‘)’

Function-name ::= ‘sin’ | ‘cos’ | ‘tan’ | ‘log’

Example. Instead of writing the following axioms

i, r -> u {calcVoltage}

u, r -> i {calcCurrent}

u, i -> r {calcImpedance}
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with implementations required for calculating the voltage, current and

impedance, we can use a single equation u = i * r.

Polymorphic types

Variables with type any provide an interesting form of polymorphism to the

language - they can be used in specifications of equations and axioms before

the concrete type is assigned.

Example. Assume we have two components, Resistor and Capacitor,

both contain attributes i,r and u. And we also have another component

Par which corresponds to the parallel connection of electrical elements. The

metainterface of Par can be as follows:

/*@ specification Par {

any x1, x2;

double i,u,r;

u = i*r;

i = x1.i + x2.i;

1/r = 1/x1.r + 1/x2.r;

u = x2.u - x1.u;

}@*/

It is easy to see that variables x1 and x2 can be bound with components

Resistor or Capacitor in a scheme, and the types of x1 and x2 can be

Resistor or Capacitor accordingly.

Notice that the concrete type is assigned to a variable with the initial

type any as soon as it is bound with another variable with a concrete type.

Subtasks

If an axiom contains a precondition in the form of an implication, it corre-

spond to the higher-order functional dependency of an attribute model. This

implication is a computational problem with assumptions on the left-hand

side and goals on the right-hand side.
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SubtaskList ::= Subtask [‘,’ SubtaskList]

Subtask ::= ‘[’IdentifierList ‘->’ Identifer ‘]’

The actual subtask is represented by a class, instance of which is passed

as a functional parameter to the implementation of an axiom.

All subtasks implement a single Java interface

public interface Subtask {

Object[] run(Object[] in) throws Exception;

}

where the body of method run is automatically generated (synthesized)

by the system.

Example.

class Foo {

/*@ specification Foo {

double a,b,c,d;

[a->b],c -> d {test}; (*)

}@*/

double test( Subtask s, double x ) {

...

}

}

In the metaclass above, the meaning of axiom (*) is - having c compute d

if there is a possibility to generate an algorithm for computing b from a.

We will demonstrate the synthesis and the code generation of subtasks in

section 5.5.2.
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Aliases

Aliases correspond to structural relations that binds tuples of attributes, i.e.

x = (x1, ..., xm). The extensive use of this feature can be made when defining

visual classes – when more than one variable needs to be bound via a port

(see section 5.2).

Alias ::= ‘alias’ [‘(’ Type‘)’] Identifier ‘=’

‘(’ ( VariableList | Wildcard ) ‘)’

Since [30] this structure has been considerably extended. One of the new

features is the type checking, i.e. if an alias is declared with the concrete type

defined in Type, only variables of that type can be bound by this alias, this

is especially useful in automatic binding with wildcards, see next section.

Previously, aliases have been used for representing lightweight structures,

however now we allow declaring aliases that may contain other aliases. Addi-

tionally, if an alias is used in pre- or postconditions of an axiom or subtask, it

is regarded as 1) an array of a concrete type if all variables in this alias have

the same type, or 2) as array of type Object[] if variables have different

types.

During the evaluation process, if we need to know how many variables

are bound by an alias, we can refer to the variable <alias_id>.length that

is automatically created after the declaration of an alias.

Example.

int a,b,u,v;

alias x = ( a,b );

alias y = ( u,v );

x = y; (*)

This example demonstrates that during generation of an attribute evalu-

ator, the relation (*) will be rewritten into
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a = u;

b = v;

Example. In this example we present the usage of aliases (as array

structure) in axioms.

class TempAvg {

/*@ specification TempAvg {

Temp t1, t2, t3;

double avg;

alias (double) tempr = ( t1.t, t2.t, t3.t );

tempr -> avg {calcAvg}; (*)

}@*/

double calcAvg( double[] tt ) {

...

}

}

Assuming that class Temp contains variable t, metaclass TempAvg uses

the axiom (*) for calculating average temperature, passing alias tempr as

parameter to the method calcAgv.

Wildcards

From the definition of alias we can observe that instead of a list of variables

alias can be declared with a wildcard.

Wildcard ::= ‘*.’Identifier

Wildcards are used for the dynamic binding of variables having the same

name (equal to Identifier) that are defined in other metainterfaces of compo-

nents declared on the same level with the wildcard.
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Example. The following specification

Resistor r1, r2;

Capacitor c1;

Par p;

alias x = ( *.u );

is semantically equivalent to the specification

Resistor r1, r2;

Capacitor c1;

Par p;

alias x = ( r1.u, r2.u, c1.u, p.u );

assuming that each metaclass contains the declaration of variable u in the

metainterface.

Wildcards are useful when we need to define relations before knowing how

many and what components will be used in the scheme.

Inheritance

The system supports inheritance of metaclasses.

MetaInterface ::= ‘specification’ ClassName

[InheritanceDecl] ‘{’

Specification ‘}’

InheritanceDecl ::= ‘super’ SuperClassList

SuperClassList ::= SuperClass [‘,’ SuperClassList]

Here we have to deal with to types of inheritances, Java object-oriented

inheritance and inheritance of metainterfaces.

Metainterface of class B can inherit metainterface of class A if and only if

A is a superclass of B in Java, i.e. B is declared as class B extends A. The

inheritance of metainterfaces means that specifications of superclasses are

unfolded into the specification of a subclass. The situation when a variable
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with the same name is declared multiple times in superclasses and/or in the

subclass, is regarded as an error.

Example. Here we show three metaclasses that correspond to compo-

nents Point, Shape and Rectangle. Shape is an abstract class that contains

initial coordinates and a variable S for square. Metaclass Rectangle is a sub-

class of Shape.

class Point {

/*@ specification Point {

int x,y;

}@*/

}

class Shape {

/*@ specification Shape {

Point p; //initial coordinates

double S; //square

}@*/

}

class Rectangle extends Shape {

/*@ specification Rectangle super Shape {

double a,b;

Point x2, y2;

S = a * b;

x2 = x + a;

y2 = y + b;

}@*/

}

5.1.2 Semantics of the specification language

The metainterface specification language has a rather straightforward trans-

lation into the internal representation in the form of a graph, like an attribute

model’s textual description has, see section 3.2.
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5.2 Visual classes

In CoCoViLa, a visual language is a set of visual classes. A visual class

consists of the following parts:

• metaclass

• visual image

• set of ports

• set of fields (attributes that are visible on a scheme or in object’s prop-

erty window)

As an example, we introduce a visual class that corresponds to the Resis-

tor element from the visual language used for simulation of electrical circuits.

The visual image of Resistor is shown in Figure 5.1 and its metaclass is pre-

sented in Figure 5.2

Figure 5.1: Visual image of Resistor

class Resistor {

/*@ specification Resistor {

double u, u1, u2, r, i;

u = u2-u1;

u = i*r;

alias p1 = (u1, i);

alias p2 = (u2, i);

}@*/

}

Figure 5.2: Resistor metaclass

40



We denote instances of visual classes in a scheme as visual objects (or

just objects). In a scheme, instances of visual classes (objects) are connected

with each other through ports. Each port of a visual class corresponds to

an attribute defined in a metainterface. From the declaration in section 4.1

we know that the binding of ports means an equality of attributes. Visual

class Resistor contains two ports corresponding to attributes p1 and p2 of

type alias. Figure 5.3 (a) shows a scheme with two instances of the class

Resistor connected together, i.e. port p2 of the first Resistor is bound with

port p1 of the second Resistor. The text in Figure 5.3 (b) corresponds to

the shallow semantics of the given scheme. Figure 5.3 (c) shows the meaning

of equality (*), i.e. how it is represented as a set of functional dependencies

in the underlying attribute model of the scheme.

(a) Connection of ports

Resistor r1;

Resistor r2;

r1.p2 = r2.p1; (*)

(b) Shallow semantics of scheme

r1.u2 = r2.u1;

r1.i = r2.i;

(c) Flattened view of equality (*)

Figure 5.3: A scheme with two Resistors and its textual meaning

5.3 Class Editor

From a users point of view CoCoViLa consists of two components (applica-

tions): Class Editor and Scheme Editor.
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The Class Editor is used for defining attribute models of components

of schemes as well as their visual and interactive aspects. In other words,

Class Editor is used to map domain concepts to visual classes [9]. Its main

window is shown in Figure 5.4. Pop-up windows for defining attributes of

a component and port properties are visible there as well. Results of a

visual language development are stored in a package (XML structure of a

package has been described in [30]) that is usable by the Scheme Editor. The

user interface for using a visual language in Scheme Editor is automatically

generated from the language definition given in Class Editor.

Figure 5.4: Class Editor window

Initially, the Class Editor has been developed in cooperation with Aulo

Aasma [1].

5.4 Scheme Editor

The Scheme Editor is a tool for usage of visual languages, i.e. developing

schemes, compiling and running programs. It provides an interface for visual

programming - building a scheme from visual images of components. The
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environment generated for a particular visual language allows the user to

compose, edit and use schemes in computations through language-specific

menus and toolbars.

Figure 5.5: Scheme Editor window

In Figure 5.5 we can observe the visual language for simulating electrical

circuits, loaded into the Scheme Editor. Buttons on the toolbar correspond

to visual classes defined in the language and are used for instantiating ob-

jects in the scheme. The scheme in this figure has been composed using

three objects of class Resistor bound (via ports) with objects representing

parallel and series connections. We see also a pop-up window that shows

the values of attributes for resistor_1. Figure 5.6 shows the window with

the metainterface that contains the textual representation of this scheme,

i.e. its shallow semantics (see section 4.2). In the next section we introduce

the implementation of deep semantics of schemes and going further with this

example will demonstrate the attribute evaluator for the given scheme.
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Figure 5.6: Scheme’s shallow semantics

5.5 Implementation of deep semantics

The part of the system responsible for the synthesis of attribute evaluators

of schemes is embedded into the Scheme Editor and hidden from the user.

A generated attribute evaluator is a Java class and the evaluation algorithm

is a method of this class.

The three kinds of deep semantics of schemes (defined in 4.3) are imple-

mented in the following way.

The deep semantics DS1 can be used for evaluating explicit computational

problems, defined by introducing goals in the specification. In order to apply

this kind of deep semantics, in the GUI of the specification window user has

to choose “Compute goal” option (see Figure 5.6).

The deep semantics DS2 can be used for solving the largest computational

problem on a scheme. This means that the system will create an evaluation

algorithm such that it will be able to evaluate all possible attributes defined
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in attribute model of a scheme. In the GUI the corresponding option is

“Compute all”.

With DS3 the situation is different. Its implementation depends not only

on the definition of functional dependences but their realizations as well.

Then the methods of metaclasses have the same role which the semantic

programs have that represent attribute dependencies in an ordinary attribute

grammar.

Before running an attribute evaluator, the following implicit steps are

performed by the system:

• the textual specification of a scheme as well as all related metainterfaces

of components are recursively parsed;

• parsed information is translated into internal representation (graph)

that corresponds to the attribute model in flattened form;

• the planner tries to build the sequence (called evaluation algorithm)

of application of functional dependences (using algorithms discussed in

sections 3.4 and 3.6) that will solve the problem;

• if previous step is successful, the sequence may need to be optimized

(in case of DS1), otherwise system omits any further steps;

• the code generator creates source code for the new Java class of at-

tribute evaluator that includes the method compute(). This method

implements the sequence produced by the planner;

• the classloader compiles the source code of an attribute evaluator and

executes it (calls method compute()) within the Scheme Editor using

the Java reflection technology;

• the executed code evaluates all required attributes and the system prop-

agates computed values back into the scheme.

In the next sections we will discuss most complicated steps in the synthesis

of attribute evaluators – planning and code generation. All other steps are

rather straitforward.
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5.5.1 Planning

The planner is the core of program synthesis technology implementation in

CoCoViLa. It implements algorithms of attribute evaluation (discussed in

Chapter 3), and working with the internal representation of attribute models,

searches the solution for the computational problem defined in the scheme.

The planner’s general strategy is “first create such sequence of appli-

cation of functional dependencies that will evaluate all attributes that can

be evaluated”. If in a particular computational problem goals have been

defined (and DS1 has been chosen), the planner works until all functional

dependences used for evaluating goal appear in the sequence, then calls the

optimization algorithm which works backwards from the end of a sequence

and removes unnecessary dependencies, i.e. dependecies that are not used in

the evaluation of goals.

5.5.2 Code generation

Java source code is extracted from a synthesized evaluation algorithm re-

turned by the planner. Code generation is the final step in the synthesis

process.

Let us have a metaclass for a scheme (i.e. textual representation of at-

tribute model of a scheme):

public class ElectricCircuits {

/*@ specification ElectricCircuits {

Resistor res;

res.r = 10;

res.i -> res.u;

}@*/

}

The metaclass of a scheme is a starting point for the whole synthesis

process. After the planner has returned an algorithm, a new class is generated

by the code generator with the same name as the metaclass of a scheme. It

implements the interface IComputable with the method compute():
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public class ElectricCircuits implements IComputable {

...

public void compute( Object... args ) {

...

}

}

Now we show that the body of the method compute() is the implemen-

tation of an evaluation algorithm. In our example the evaluation algorithm

is as follows:

public void compute( Object... args ) {

res.r = 10;

res.u = (res.i * res.r);

}

Variables, declared in metainterfaces, are not proper members of Java

classes. If they become usable in the synthesized Java program (attribute

evaluator), these variables have to be declared in Java classes. In our example

the metaclass of the scheme contains one variable res, i.e. the declaration

of it is as follows:

public class ElectricCircuits implements IComputable {

public Resistor res = new Resistor();

...

}

whereas Resistor is a metaclass, and all its variables have to be declared

in Java as well

public class Resistor {

double i;

double r;

double u;

...

}
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In this example the specification contains one goal and one assumption

expressed by res.i -> res.u, which means “compute res.u from res.i”

assuming that the value of res.i is assigned from outside of attribute eval-

uator. I.e. the value of res.i must be passed as an element of array args

being optional parameter of the method compute() when it gets executed.

Finally, we get the class:

public class ElectricCircuits implements IComputable {

public Resistor res = new Resistor();

public void compute( Object... args ) {

res.i = ((java.lang.Double)args[0]).doubleValue();

res.r = 10;

res.u = (res.i * res.r);

}

}

The specification language allows specifying alternative outputs of real-

izations of axioms. Exceptions are used to guarantee the correct continuation

or the termination of evaluation in case an error occurs. In the next exam-

ple we introduce the exception handling in our system. Let us have the

specification:

class Test1 {

/*@ specification Test1 {

...

x -> y |(IllegalStateException){calc};

}@*/

...

}

After the code generation, exceptions are handled by surrounding the call

of a method with try-catch statement

public class Test1 implements IComputable {

...
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public void compute( Object... args ) {

try {

y = calc( int x );

}

catch( IllegalStateException ex0 ) {

ex0.printStackTrace();

return;

}

}

...

}

The reason of using the return statement instead of System.exit(1)

is that we do not actually shut down the program, the goal is to finish

processing of the method compute(). Due to the fact that the synthesized

program is compiled and launched within the bounds of the system, the usage

of System.exit(1) would cause the shutdown of the whole application.

Subtasks

For each subtask the code generator creates a new Java class that implements

the interface Subtask.

public interface Subtask {

Object[] run(Object[] in) throws Exception;

}

This class is declared as an inner class in the method compute(). The

advantage of inner classes is that they have a quick access to the member

variables of the main class. The code generation for a subtask consists of the

following steps:

1. define a subtask class as inner class of compute(),

2. create an instance of a subtask class,
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3. generate a method call with a subtask instance as parameter

From the given metainterface

public class Test2 {

/*@ specification Test2 {

int a, b, c, d;

...

[a -> b],c -> d {calc};

...

}@*/

public int calc(Subtask sub) {

...

}

}

the following source code is generated (comments “1”, “2” and “3” rep-

resent the code generation steps described above):

public class Test2 implements IComputable {

...

public void compute() {

...

//1

class Subtask_1 implements Subtask {

public Object[] run(Object[] in)

throws Exception {

a = ((Integer)in[0]).intValue(); (*)

...

return new Object[]{ b };

}

}
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//2

Subtask_1 subtask_1 = new Subtask_1();

//3

d = calc(subtask_1, c);

}

public int calc(Subtask subtask, int count) {

try {

for( int i = 0; i < count; i ++)

Object[] in = new Object[1];

in[0] = i; (**)

Object[] out = subtask.run(in);

...

}

} catch(Exception ex) {}

}

}

Notice that the method run() is declared with the parameter in of type

Object[]. This parameter is used to pass input values to the subtask. First,

before calling the method run(), such array of Objects has to be created,

whereas variables of primary types must be wrapped into corresponding ob-

jects (e.g. int to Integer), in Java version 5 this procedure, called autobox-

ing, is automatically handled by the compiler (**). However to retrieve the

input value in the run method, an element of array has to be casted to the

required type (*). The code generator deals with it automatically knowing

the exact type of an attribute used solving the computational problem of a

subtask.

For some computational problems the generated evaluation algorithm

contains subtasks that have other subtasks nested inside. In such cases,

the code generator uses recursive algorithm to generate the source code.
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Chapter 6

Experiments

During the implementation of CoCoViLa several demonstration packages (i.e.

visual languages) have been developed originating from different domains,

e.g. mechanics (package for calculating kinematics of gearboxes), hardware

design (package for simulating logical circuits), UML diagrams, neural net-

works, electrical circuits etc. We are certain that the system is able to handle

large schemes.

6.1 Visual language for simulating dynamic

systems

CoCoViLa with its automatic program synthesis technique provides a good

opportunity for implementing simulation software. In this section we demon-

strate the package for finding next state of a dynamic system from a given

state and time. Such are systems described by ordinary differential equa-

tions. This package has been developed in cooperation with Mait Harf who

had initially implemented similar package in NUT. The scheme for a compu-

tational problem, shown is Figure 6.1 has been composed using the following

components: Integrator, Adder, Clock and Graph. As it may be seen from

the given figure, a part of the attribute model of the scheme in permanent

(starting from the line “int time”), i.e. it is possible to declare the common

part of the model for all attribute models of schemes (computational prob-
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Figure 6.1: Dynamic system - scheme, specification and outcome

lems) based on a particular package. The specification of such common part

as well as realizations of its axioms (if there are any) are stored in separate

files and added automatically into the metaclass of a scheme.

The method proc_run() being the realization of the axiom

[ state -> nextstate ], initstate, time -> finalstate

controls the simulation by repeatedly requesting to compute a new state

of the system from the current state. This is done by calling the subtask

[ state -> nextstate ].

Objects of components Integrator and Clock have states which change

in time and they both contain methods for computing nextstate from state.

Objects of the component Adder simply compute output from given inputs.

The actual algorithm for attribute evaluation is synthesized for every partic-

ular problem, depending on the scheme of a dynamic system.
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6.2 Electrical circuits

The problem domain for this experiment is electrical (direct current) cir-

cuits. Let us define three concepts – resistor element, parallel and series

connections. The specifications of attribute models (based on the Ohm’s

law) presented in CoCoViLa are as follows:

class Resistor {

/*@ specification Resistor {

double u, u1, u2, r, i;

u = u2-u1;

u = i*r;

alias p1 = (u1, i, r);

alias p2 = (u2, i, r);

}@*/

}

class Parallel {

/*@ specification Parallel {

double u, u1, u2, i, i1, i2, r, r1, r2;

i = i1 + i2;

1/r = 1/r1 + 1/r2;

u = i*r;

u = u2 - u1;

alias p1 = (u1, i, r);

alias p2 = (u2, i, r);

alias p3 = (u1, i1, r1);

alias p4 = (u1, i2, r2);

alias p5 = (u2, i1, r1);

alias p6 = (u2, i2, r2);

}@*/

}
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Figure 6.2: Circuit with three resistors, one parallel and one series branch

class Series {

/*@ specification Series {

double u, u1, u2, u3, r, i, r1, r2;

r = r1 + r2;

u = i*r;

u = u2 - u1;

alias p1 = (u1, i, r);

alias p2 = (u2, i, r);

alias p3 = (u1, i, r1);

alias p4 = (u3, i, r1);

alias p5 = (u3, i, r2);

alias p6 = (u2, i, r2);

}@*/

}

Figure 6.2 represents a scheme containing parallel and series connection

of three resistors. We see here also a pop-up window of attribute values for

resistor_1.

The corresponding shallow meaning of a given scheme is as follows:
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Parallel parallel_1;

parallel_1.u1 = 0;

parallel_1.u2 = 100;

Resistor resistor_3;

resistor_3.r = 5;

Resistor resistor_1;

resistor_1.r = 10;

Series series_1;

Resistor resistor_2;

resistor_2.i = 5;

parallel_1.p3 = resistor_3.p1;

parallel_1.p5 = resistor_3.p2;

resistor_1.p1 = series_1.p3;

resistor_1.p2 = series_1.p4;

resistor_2.p1 = series_1.p5;

resistor_2.p2 = series_1.p6;

series_1.p1 = parallel_1.p4;

series_1.p2 = parallel_1.p6;

After invoking the planner, the following evaluation algorithm is pro-

duced:

resistor_3.r = 5;

parallel_1.u2 = 100;

parallel_1.u1 = 0;

resistor_1.r = 10;

resistor_2.i = 5;

series_1.r1 = resistor_1.r;

series_1.i = resistor_2.i;

resistor_3.u1 = parallel_1.u1;

series_1.u1 = parallel_1.u1;

parallel_1.u = (parallel_1.u2 - parallel_1.u1);

series_1.u2 = parallel_1.u2;

resistor_3.u2 = parallel_1.u2;
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Figure 6.3: A scheme after evaluation

parallel_1.r1 = resistor_3.r;

resistor_3.u = (resistor_3.u2 - resistor_3.u1);

resistor_1.u1 = series_1.u1;

series_1.u = (series_1.u2 - series_1.u1);

resistor_2.u2 = series_1.u2;

parallel_1.i2 = series_1.i;

resistor_1.i = series_1.i;

series_1.r =( series_1.u/series_1.i);

resistor_1.u = (resistor_1.i * resistor_1.r);

resistor_3.i = resistor_3.u/resistor_3.r;

parallel_1.r2 = series_1.r;

series_1.r2 =( series_1.r-series_1.r1);

resistor_1.u2 = resistor_1.u+resistor_1.u1;

parallel_1.i1 = resistor_3.i;

parallel_1.r =(1/ ((1 / parallel_1.r1) + (1 / parallel_1.r2)));

parallel_1.i = (parallel_1.i1 + parallel_1.i2);

57



resistor_2.r = series_1.r2;

series_1.u3 = resistor_1.u2;

resistor_2.u = (resistor_2.i * resistor_2.r);

resistor_2.u1 = series_1.u3;

This algorithm corresponds to the deep semantics DS2 of the scheme,

namely it solves the largest solvable problem on the scheme. Figure 6.3

shows the results of computation as a visual feedback in the Scheme Editor

window, as well as values of attributes of resistor_1 in the pop-up window.

6.3 Minimax

Here we present the minimax computational problem: “find minimal value

of maximal values of elements of rows of a matrix”. With this example it is

easy to demonstrate the usage of subtasks in computations.

This computational problem has been implemented using three compo-

nents: Matrix, Min and Max. The metaclass Matrix contains the axiom

row, col, matrix → element{getElement} for retrieving an element of a

matrix (which is represented as two-dimensional array of integers). Meta-

classes Min and Max contain axioms with subtasks for finding the minimum

((arg → val) → minval{getMinV al}) and maximum ((arg → val) →
maxval{getMaxV al}) values of a function that computes val from arg re-

spectively. The realizations of these axioms are similar, i.e. they both imple-

ment loops that iterate through the set of arguments and remember minimum

or maximum value among values returned by the subtask arg → val.

The shallow semantics of a scheme (in Figure 6.4) that represent the

minimax computational problem is as follows:

/*@ specification Minmax {

Matrix Matrix_0;

Matrix_0.tm = {"1,2,3", "4,5,6", "7,8,9"};

Min Min_1;

Max Max_2;

Result Result_1;
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Figure 6.4: The scheme of minimax

Matrix_0.element = Max_2.val;

Max_2.maxval = Min_1.val;

Matrix_0.row = Min_1.arg;

Max_2.arg = Matrix_0.col;

Result_1.value = Min_1.minval;

-> Min_1.minval;

}@*/

We use the deep semantics DS1 for minimax, i.e. the planner creates an

attribute evaluation algorithm for finding the value of the goal Min_1.minval.

Figure 6.5 shows the and-or search tree for minimax. Arrows denote the

branch that solves the problem. The Java source code of the attribute eval-
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Figure 6.5: And-or search tree for minimax

uator for minimax produced by the code generator is shown in Figure 6.6.

6.4 Semantics DS3

The semantics DS3 has been used in a package “UML Class Diagrams” de-

veloped by Ando Saabas that is intended for the generation of Java class

templates from the class diagrams (Figure 6.7). The visual language in-

cludes images of classes and their relations: inheritance and aggregation.

The synthesized program is a source generator for the class templates.

We are developing an UML-like visual language for the dynamic web

service composition from ontologies described using OWL (Web Ontology

Language). The usage of deep semantics DS3 will be assured by the imple-

mentation of Java methods (realizations of axioms) that will generate OWL

descriptions of composite processes from atomic processes of services defined

and put together in the scheme.
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Figure 6.6: Synthesized code of attribute evaluation algorithm of minimax
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Figure 6.7: A scheme of UML class diagrams
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Chapter 7

Related Work

There are a number of works where attributes are used in presentation of

semantics of graphs. Götler [8] introduces a formalization of a notion that

he calls graphic. A graphic is considered to consist of a graph describing

the overall structure and a set of attributes describing the shape, placement,

etc. of the nodes and edges of the underlying graph. The formal handling of

graphics is done by attributing the rules of graph grammars and by passing

the attributes up and down the derivation tree of the graphic.

The paper from Alpern, et al. [2] introduces the concept of attributed

graph specification (AGS) and develops a theory of strongly typed graphs.

Graphs are modeled as collections of boxes connected by cables. Cables

and boxes contain ports. A cable and a box are connected through ports.

A graph is specified as a composition of boxes and cables. Attributes are

associated with boxes and and attribute evaluation rules are attached to

the composition rules. An attribute evaluation rule associated with a box

composition can additionally specify a direction of flow of the attribute values

from one port to another port in the carrier. We use the similar technique

in the construction of schemes, i.e. boxes are visual components with ports,

and cables are the bindings. Authors pay much attention to syntax and

specification language. Attribute evaluation strategies, static and dynamic

are presented only briefly.

The NUT system [41] is a programming tool supporting declarative pro-
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gramming in a high-level language, automatic program synthesis and visual

specification of problems by means of schemes. The central part of the system

is Structural Synthesis of Programs (SSP), which uses intuitionistic propo-

sitional logic. NUT restricts its attention to constructing programs from

pre-programmed modules, rather than from primitive instructions of a pro-

gramming language. The NUT specification language is an object-oriented

language extended with features for program synthesis, the pre-programmed

modules are methods of classes supplied with specifications. Our attribute

evaluation method uses the ideas of SSP from NUT.

A special purpose application of attribute semantics of graphs is presented

in PhD thesis by Ramanand Mandayam [20]. In this dissertation author

introduces a framework and a language for the specification and evaluation

of performance attributes of VLSI (Very Large Scale Integration) systems.

The PDL (Performance Description Language) is presented as performance

modeling language based on Attributed Nodes-Only Grammars.

The PDL is used for the specification of performance attributes supplied

with computable functions for the evaluation of these attributes and indi-

cating temporal relationships between design instances and the evaluation

of attribute values. The proposed language allows to attach attributes to

objects in the design and to propagate attribute values up, down and lat-

erally across various levels in the design hierarchy. Like the specifications

introduced in [2], design objects in PDL are modules, carriers and ports.

Modules are the building block of all designs. Carriers represent the wires

and nets in the design. Modules contain other modules, carriers and ports.

Carriers represent wires and contain ports connecting ports of one module

to ports of other modules.

Mandayam explains why graph grammars are more suitable than string

grammars for modeling VLSI and digital designs. The reasons are the fol-

lowing:

• Relationships between symbols in a graph grammar can be more com-

plex that the linear relationships of string grammars.

• The production rules are more powerful.
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• A graph is a natural representation for VLSI designs as a network of

nodes and edges.

• The edges may improve expressive capabilities of grammars e.g. by

specifying the context conditions.

A subset of graph grammars called Nodes-Only Grammars (NOG) are in-

troduced as an appropriate formalism for specifying and recognizing designs

presented in the paper. Node labels are considered as symbols in the gram-

mar. Those symbols that appear in the right hand side of a production rule

can appear in any arbitrary order in an actual instance of that production

in an input.

object X contains

objects P, Q, R, S;

end object X;

Figure 7.1: Design pseudo code

Figure 7.1 presents the design (in pseudo-code) as a valid instance of

composition C1 = 〈X, {P, Q, R, S}〉. A composition Ci in a NOG is defined

as a 2-tuple Ci = 〈αi, βi〉 where αi is a single node label and βi is a set of node

labels. The composition Ci specifies that an occurrence of node αi can be

replaced by the set of nodes βi. Composition rules represent the production

rule applied (or applicable) at a node (the left-hand side) in a graph. In the

context of recognizing valid designs it specifies that if the design contains

and object αi then αi must be composed of a set of objects βi.

More (hierarchical) composition rules are introduced, including module,

carrier and port composition. The design is called acceptable by a graph

grammar G if it is well-formed in G.

Attributed Nodes-Only Grammars (ANOG) are a subset of graph gram-

mars that are extended with attributes and their evaluation rules. Attributes

in PDL are named variables associated with non-terminal and terminal sym-

bols in the NOG.
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In the framework of ANOG a design is valid if: a) there exists a valid

derivation graph for the design, and b) all instances in the attribute instance

graph are consistently evaluated. An evaluation is consistent if values as-

signed to all attribute instances in the attribute instance graph satisfies the

set of equalities specified by the attribute evaluation rules. In the context

of a PDL program specification, a design is valid if: a) all objects in the

design are valid instances of corresponding objects in the PDL program, and

b) there exists an acyclic evaluation sequence for the design.

Performance attributes are classified into two categories: static and dy-

namic. Static attributes do not depend on dynamic attributes and once

evaluated, do not change with a change in the data. The concept of con-

trolled cyclic dependencies among attribute occurrences is introduced and a

mechanism to conceptually break cycles in order to determine an evaluation

sequence is presented.

The work of Mandayam presents a rather intricate set of concepts for

handling semantics of a special visual language. Our goal will be to simplify

the set of concepts and to make the application more general.

Penjam in [27] shows how attribute semantics of programming languages

can be presented by means of computational models, initially introduced

by Tyugu in [33]. He proves the semantical equivalence between attribute

and computational models both being two approaches to program and com-

piler specification and implementation. Computational problems are used for

knowledge representation and problem solving using the method of structural

synthesis of programs [25].

Vilo in [44] presents the implementation of languages based on attribute

grammars and computational models discussed by Penjam. The experimen-

tal work has been done in NUT. The dynamic implementation of attribute

grammars has been accomplished in the following way: building the com-

putational model of each derivation tree. The relation between all attribute

instances of a corresponding syntax tree has to be included into the model.

The attribute evaluation algorithm is synthesized deriving the sequent

M(Tree) ` X −−→
λx.F

Y,
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where M is a computational model, X denotes the set of input variables and

Y denotes the set of synthesized attributes of the tree. Each production of a

given attribute grammar is represented by a class in NUT. Attribute depen-

dencies are introduced with the equality operation, i.e. the node correspond-

ing to right-hand side nonterminal of a production rule is made equivalent

to the node on the left-hand side of an other production rule.

The static realization of attribute grammars allows generating attribute

evaluators independently from the syntax trees during the compilation. As in

the case with dynamic implementation, each production of a given attribute

grammar is represented by a class in NUT. But instead of just having simple

attribute dependences in the form of equalities, higher-order relations in the

form of conditional computability statements (with subtasks) are added into

the models that correspond to visits into the subtrees. This method works

only when the class of attribute grammars is restricted to absolutely non-

circular ones. The evaluation algorithm is a derivation of a sequent

` Tree, P0 −−→
λt.F

S,

where S denotes the computability of synthesized attributes of the root of

tree t and P0 denotes the computational model corresponding to the only

production rule with S0 on the left-hand side.

The last two papers discussed conventional attribute semantics of pro-

gramming (string) languages. It has been a good starting point for the

present thesis introducing the semantics of scheme (graph) languages.
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Chapter 8

Conclusions

In this thesis we have introduced a method for representing the semantics of

visual schemes by means of attribute models.

First, we have presented attribute models, composition of attribute mod-

els, attribute models in flattened form and different types of attribute de-

pendencies in a form suitable for presenting semantics of schemes. We use

higher-order attribute models that contain functional dependences with sub-

tasks (hofd). Higher-order attribute models are more expressive than models

without hofds and allow synthesizing recursive, branching or cyclic programs.

We have shown the technique of dynamic attribute evaluation on simple at-

tribute models as well as on higher-order attribute models.

Second, we have defined several kinds of semantics of schemes. The se-

mantics of schemes has been described on two different levels. The shallow

semantics gives a textual representation of the graph underlying a scheme.

The deep semantics of a scheme gives a set of programs that can be auto-

matically derived from the scheme or it gives the value of a distinguished

attribute as a meaning of the scheme.

An essential part of the work is implementation of the attribute evaluation

technique in the system CoCoViLa that is a tool for implementation of visual

languages. We have used the concept of metainterfaces as an extension of

Java classes and the specification language of metainterfaces is used for the

textual specification of attribute models of visual components as well schemes
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of visual languages. In CoCoViLa, a visual language is implemented as a set

of visual classes. There are two publications on CoCoViLa made during the

last year in co-authorship with A. Saabas and E. Tyugu, see Appendix A.

The first introduces the tool as a compiler-compiler for visual languages [9]

and the second one as a visual tool for generative programming [10]. The

third paper written together with Tyugu introduces the concept of attribute

models and implementation of deep semantics of schemes in CoCoViLa. It

has been accepted for JCKBSE’06 (Joint Conference on Knowledge-Based

Software Engineering) that will be held in August 2006.
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Visuaalsete Keelte Atribuut Semantika.
Pavel Grigorenko

Resümee

Visuaalsed spetsifitseerimiskeeled on muutumas populaarseks, kuid nende

kasutamist piirab täpse semantika puudumine. Programmeerimiskeelte vald-

konnas on semaktikat hõlbus realiseerida atribuutgrammatikate abil, mis

võimaldavad lähteteksti järkjärgult teisendada masinkoodiks. Antud töös on

atribuutgrammatikaid üldistatud ja sobitatud visuaalsete keelte semantika

esitamiseks.

Esiteks, käesolevas töös on laiendatud atribuutmudelte mõistet. Me tõime

sisse atribuutmudelite kompositsiooni, atribuutmudelite lameda kuju ja kasu-

tame kõrgemat järku funktsionaalseid sõltuvusi sisaldavaid atribuutmudeleid

skeemide semantika esitamiseks. Need mudelid võimaldavad sünteesida harg-

nevaid, rekursiivseid ja iteratiivseid programme,mida me kasutame atribuu-

tide dünaamiliseks väärtustamiseks.

Teiseks, me defineerisime visuaalsetele skeemikeeltele mitut liiki seman-

tikad. Semantikad on esitatud kahel tasemel: pindmine semantika annab

tekstilise skeemide esituse. Süvasemantika annab skeemist kui spetsifikat-

sioonist sünteesitavad programmid, või ka skeemi tähenduse skeemi peaa-

tribuudi väärtuse näol.

Suur osa tööst on pühendatud atribuutide väärtustamise realisatsioonile

programmeerimiskeskkonnas CoCoViLa, mis on visuaalsete keelte realiseer-

imise vahend. See on Java-põhine keskkond, milles Java klasse saab laien-

dada metainterfeissidega. Viimased on atribuutmudelite kirjeldused klasside

kommentaarides ja esitavad nii visuaalsete komponentide kui ka skeemide

mudeleid. Selle kohta on viimasel aastal avaldatud kaks publikatsiooni koos

A. Saabase ja E. Tõuguga, millest esimeses esitatakse CoCoViLa-t kui vi-

suaalsete keelte kopilaatorite kompilaatorit [9] ja teises kui generatiivse pro-

grammeerimise visuaalset vahendit [10]. Skeemikeelte atribuutmudelid ja

süva-semantika on esitatud ühises ettekandes koos E. Tõuguga, mis on vastu

võetud 2006. a. augustis toimuvale rahvusvahelisele konverentsile (Joint

Conference on Knowledge-Based Software Engineering 2006).
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